

Fact-Checking Complex Claims with Program-Guided Reasoning

Liangming Pan, Xiaobao Wu, Xinyuan Lu, Anh Tuan Luu, William Yang Wang, Min-Yen Kan, Preslav Nakov

ACL 2023 (Long Paper)

Presenter: Liangming Pan

What is Fact Checking?

• The proliferation of disinformation in various forms, including propaganda, news, and social media, has made automated fact-checking a crucial application of natural language processing (NLP).

In the language of NLP:

• The goal of fact-checking is, given a claim made by a claimant, to find a collection of evidence and provide a verdict about the claim's veracity based on the evidence. (Glockner et al., 2022)

Verifying Deep Claims

• To verify a real-world claim, we often cannot find a "direct evidence" to support / refute the claim. Instead, it often requires complex, multi-step reasoning.

Claim: Both James Cameron and the director of the film Interstellar were born in Canada.

Idea: We formulate the above process as Program Execution

Claim: Both James Cameron and the director of the film Interstellar were born in Canada.

Claim: Both James Cameron and the director of the film Interstellar were born in Canada.

Claim: Both James Cameron and the director of the film Interstellar were born in Canada.

Claim: Both James Cameron and the director of the film Interstellar were born in Canada.

Claim: Both James Cameron and the director of the film Interstellar were born in Canada.

Claim: Both James Cameron and the director of the film Interstellar were born in Canada.

Claim: Both James Cameron and the director of the film Interstellar were born in Canada.

Claim: Both James Cameron and the director of the film Interstellar were born in Canada.

Claim: Both James Cameron and the director of the film Interstellar were born in Canada.

We decouple the program generation and program execution for flexibility and easy debugging.

Reasoning Program Generation

Claim: Both James Cameron and the director of the film Interstellar were born in Canada.

We use in-context learning for data efficiency.

Sub-Functions: QA

Functions QA Model Fact Checker Logical Reasoner

We base the sub-functions on the FLAN-T5 model, which finetunes T5 with 1.8k finetuning tasks, including chain-of-thought data.

Instruction finetuning

•

Sub-Functions: QA

Evaluation Datasets

- HOVER (Jiang et al., 2020)
 - 1,126 two-hop claims
 - 1,835 three-hop claims
 - 1,039 four-hop claims

Claim: Patrick Carpentier currently drives a Ford Fusion, introduced for model year 2006, in the NASCAR Sprint Cup Series.

Evidence:

Doc A: Ford Fusion is manufactured and marketed by Ford. Introduced for the 2006 model year, ...

Doc B: Patrick Carpentier competed in the NASCAR Sprint Cup Series, driving the Ford Fusion. ...

Verdict: Supported

- FEVEROUS (<u>Aly et al., 2021</u>)
 - We only selected 2,962 claims that require exclusively textual evidence.

Claim: Red Sundown screenplay was written by Martin Berkeley; based on a story by Lewis B. Patten, who often published under the names Lewis Ford, Lee Leighton and Joseph Wayne.

Evidence:

Page: wiki/Red_Sundown e₁(Introduction):

Red Sundown

Directed by Jack Arnold Produced by Albert Zugsmith Screenplay by Based on Lewis B. Patten

Page: wiki/Lewis_B._Patten
e2(Introduction): He often published under the names
Lewis Ford, Lee Leighton and Joseph Wayne.

Verdict: Supported

Baseline Models

- Pretrained Transformer models
 - BERT-FC (Soleimani et al., 2020)
 - LisT5 (Jiang et al., 2021)
- FC/NLI fine-tuned models
 - RoBERTa-NLI (Nie et al., 2020)
 - DeBERTaV3-NLI (He et al., 2021)
 - MULTIVERS (Wadden et al., 2022)
- In-context learning models
 - FLAN-T5
 - GPT3-Codex

Main Results

Few-shot learning models		HOVER (2-hop)		HOVER (3-hop)		HOVER (4-hop)		FEVEROUS-S	
		Gold	Open	Gold	Open	Gold	Open	Gold	Open
Ι	BERT-FC (Soleimani et al., 2020)	53.40	50.68	50.90	49.86	50.86	48.57	74.71	51.67
	LisT5 (Jiang et al., 2021)	56.15	52.56	53.76	51.89	51.67	50.46	77.88	54.15
II	RoBERTa-NLI (Nie et al., 2020)	74.62	63.62	62.23	53.99	57.98	52.40	88.28	57.80
	DeBERTaV3-NLI (He et al., 2021)	<u>77.22</u>	68.72	65.98	60.76	60.49	56.00	91.98	58.81
	MULTIVERS (Wadden et al., 2022b)	68.86	60.17	59.87	52.55	55.67	51.86	86.03	56.61
III	GPT3-Codex (Chen et al., 2021)	70.63	65.07	66.46	56.63	63.49	57.27	89.77	62.58
	FLAN-T5 (Chung et al., 2022)	73.69	69.02	65.66	60.23	58.08	55.42	90.81	63.73
IV	ProgramFC (N=1)	74.10	69.36	66.13	60.63	65.69	59.16	91.77	67.80
	ProgramFC (N=5)	75.65	<u>70.30</u>	<u>68.48</u>	<u>63.43</u>	<u>66.75</u>	57.74	<u>92.69</u>	<u>68.06</u>

Q

PROGRAMFC achieves the best performance on 7 out of 8 evaluations.

Main Results

Few-shot learning models		HOVER (2-hop)		HOVER (3-hop)		HOVER (4-hop)		FEVEROUS-S	
		Gold	Open	Gold	Open	Gold	Open	Gold	Open
Ι	BERT-FC (Soleimani et al., 2020)	53.40	50.68	50.90	49.86	50.86	48.57	74.71	51.67
	LisT5 (Jiang et al., 2021)	56.15	52.56	53.76	51.89	51.67	50.46	77.88	54.15
	RoBERTa-NLI (Nie et al., 2020)	74.62	63.62	62.23	53.99	57.98	52.40	88.28	57.80
II	DeBERTaV3-NLI (He et al., 2021)	77.22	68.72	65.98	60.76	60.49	56.00	91.98	58.81
	MULTIVERS (Wadden et al., 2022b)	68.86	60.17	59.87	52.55	55.67	51.86	86.03	56.61
TIT	GPT3-Codex (Chen et al., 2021)	70.63	65.07	66.46	56.63	63.49	57.27	89.77	62.58
111	FLAN-T5 (Chung et al., 2022)	73.69	69.02	65.66	60.23	58.08	55.42	90.81	63.73
IV	ProgramFC (N=1)	74.10	69.36	66.13	60.63	65.69	<u>59.16</u>	91.77	67.80
	ProgramFC (N=5)	75.65	<u>70.30</u>	<u>68.48</u>	<u>63.43</u>	<u>66.75</u>	57.74	<u>92.69</u>	<u>68.06</u>
		0 70/		4 0 0 (4.4.004			

+2.7%

+4.3%

+14.9%

ProgramFC is more effective on deeper claims.

Main Results

Few-shot learning models		HOVER (2-hop)		HOVER (3-hop)		HOVER (4-hop)		FEVEROUS-S	
		Gold	Open	Gold	Open	Gold	Open	Gold	Open
I	BERT-FC (Soleimani et al., 2020)	53.40	50.68	50.90	49.86	50.86	48.57	74.71	51.67
	LisT5 (Jiang et al., 2021)	56.15	52.56	53.76	51.89	51.67	50.46	77.88	54.15
	RoBERTa-NLI (Nie et al., 2020)	74.62	63.62	62.23	53.99	57.98	52.40	88.28	57.80
II	DeBERTaV3-NLI (He et al., 2021)	77.22	68.72	65.98	60.76	60.49	56.00	91.98	58.81
	MULTIVERS (Wadden et al., 2022b)	68.86	60.17	59.87	52.55	55.67	51.86	86.03	56.61
III	GPT3-Codex (Chen et al., 2021)	70.63	65.07	66.46	56.63	63.49	57.27	89.77	62.58
	FLAN-T5 (Chung et al., 2022)	73.69	69.02	65.66	60.23	58.08	55.42	90.81	63.73
IV	ProgramFC (N=1)	74.10	69.36	66.13	60.63	65.69	59.16	91.77	67.80
	ProgramFC (N=5)	75.65	<u>70.30</u>	<u>68.48</u>	<u>63.43</u>	<u>66.75</u>	57.74	<u>92.69</u>	<u>68.06</u>

Aggregating reasoning programs is helpful.

How Reasoning Program Helps?

- **PROGRAMFC v.s. FLAN-T5** using different language model sizes.
- The performance of the end-to-end FLAN-T5 model decreases significantly with decreasing model size. However, this trend is less obvious for PROGRAMFC.

The high-level planning offered by reasoning programs alleviates the demand on strong, large-scale models.

How Reasoning Program Helps?

• In the open-book setting, ProgramFC significantly outperforms one-step retrieval.

Intuition: Some information may not be present in the original claim, but is only revealed during the reasoning process (e.g., "Christopher Nolan" in the previous example).

Figure 5: Retrieval recall@10 for the one-step retrieval and the iterative retrieval in PROGRAMFC.

Iteratively retrieving information guided by the reasoning program leads to better results.

Reasoning Program Evaluation

Correct Examples

Claim: Tritonia and Phyteuma are both names for a plant genus.

Predicted Program: fact_1 = Verify("Tritonia is a name for a plant genus.") fact_2 = Verify("Phyteuma is a name for a plant genus.") label = Predict(fact_1 and fact_2)

Claim:

The country that Fujairah College is located in had a 2013 population of 9.2 million until it was hit by the plague in 1483 when the population was halved.

```
Predicted Program:
answer_1 = Question("Which country is Fujairah College located in?")
fact_1 = Verify("{answer_1} had a 2013 population of 9.2 million.")
fact_2 = Verify("{answer_1} was hit by the plague in 1483.")
fact_3 = Verify("The population of {answer_1} was halved in 1483.")
label = Predict(fact 1 and fact 2 and fact 3)
```

Reasoning Program Evaluation

• Wrong Examples

Semantic Error — Token: incorrect or missing arguments/variables

Example 1: Bitter Jester and The Future of Food are not both documentaries about food.

Semantic Error — Structure: incorrect program structure

Example 3: Richard Strauss, German composer of Die Nacht, composed another well-established opera called Der Rosenkavalier.

Reasoning Program Evaluation

• Wrong Examples

Semantic Error — Subtask: missing / redundant / incorrect sub-task calls
Example 5:
The musician, who founded Morningwood with Max Green, is older than Max Green.
Predicted Program:
answer_1 = Question("Who founded Morningwood with Max Green?")
answer_2 = Question("When was Max Green born?")
answer_3 = Question("When was the musician born?")
fact_1 = Verify("{answer_3} is older than {answer_2}.") → {answer_1} is older than {answer_2}.

Free Type	Proportion (%)						
LITOI Type	2-hop	3-hop	4-hop				
Syntax error	0%	0%	0%				
Semantic error	29%	38%	77%				
Token	8%	20%	18%				
Structure	19%	13%	57%				
Subtask	2%	5%	2%				
Incorrect execution	71%	62%	23%				

Summary

We talked about how to build a fact-checking system that are:

- Data Efficiency
 - Build a model with minimal or no training data.
- Explanablility
 - Provide a clear explanation of its reasoning process.
- Deep Reasoning
 - Collect multiple pieces of evidence and applying complex reasoning.

Our solution: Program-guided Reasoning.

Thanks!

Any questions?

Liangming Pan Email: liangmingpan@ucsb.edu

