

Fact-Checking Complex Claims with Program-Guided Reasoning

Liangming Pan^{1,2}, Xiaobao Wu³, Xinyuan Lu⁴, Anh Tuan Luu³, William Yang Wang¹, Min-Yen Kan⁴, Preslav Nakov²

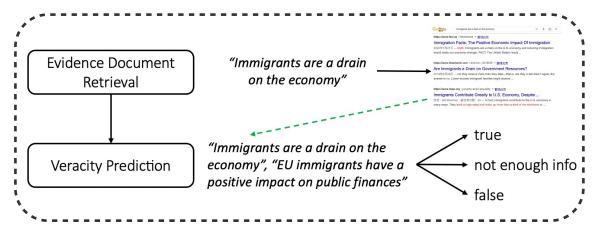
²MBZUAI ³Nanyang Technological University ⁴National University of Singapore ¹University of California, Santa Barbara

liangmingpan@ucsb.edu, william@cs.ucsb.edu, kanmy@comp.nus.edu.sg, preslav.nakov@mbzuai.ac.ae

Introduction

What is Fact-Checking?

Given a claim made by a claimant, to find a collection of evidence and provide a verdict about the claim's veracity label based on the evidence.



Settings:

- 1) Gold Evidence: the ground-truth evidence is given.
- 2) Open-book: a large textual corpus is given as the source of evidence.
- 3) Closed-book: no source of evidence is available.

Challenges:

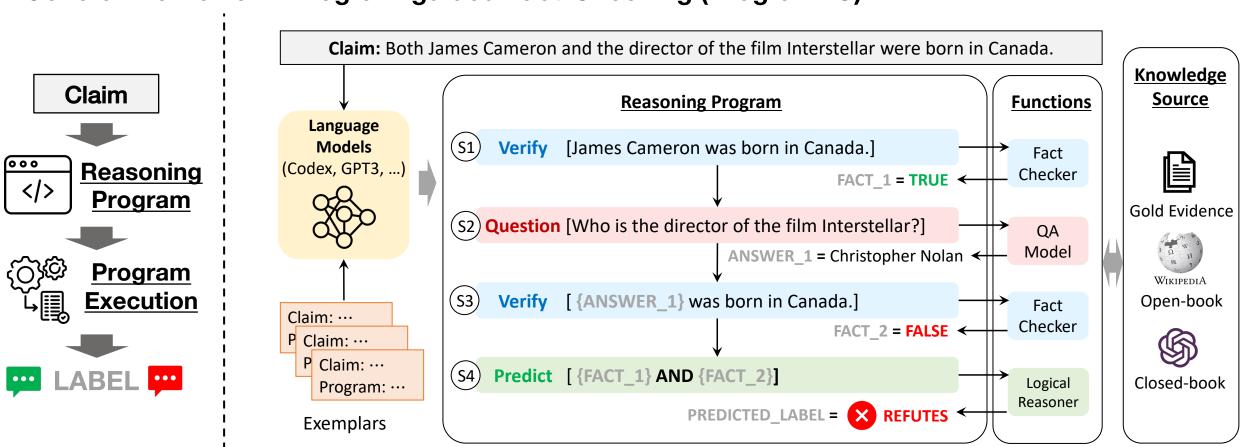
Data Efficiency

- Human annotation is often time-consuming and costly.
- Fact-checking with minimal or no training data.

Explanablility

The system should not only predict the veracity of the claim, but it should also provide a clear explanation of its reasoning process to help users understand and trust the results.

Approach: Program-Guided Fact-Checking



General Framework: Program-guided Fact-Checking (ProgramFC)

Program Generation

• Given the input claim C, a planner P generates a reasoning program $P = [S_1, \dots, S_n]$, which consists of n sequentially ordered reasoning steps S_i .

Reasoning Step

- Each reasoning step is defined as a tuple $S_i = (f_i, A_i, V_i)$
- f_i specifies the sub-task function $f_i \in \mathcal{F}$
- A_i is the arguments passed to the function f_i

Deep Reasoning

Evaluating the veracity of real-world claims often involves collecting multiple pieces of evidence and applying complex reasoning.

Datasets

HOVER (Jiang et al., 2020)

- 1,126 two-hop claims
- 1,835 three-hop claims
- 1,039 four-hop claims

FEVEROUS (Aly et al., 2021)

• We selected 2,962 claims that require exclusively textual evidence.

Limitations

Decomposition can be hard

• For many real-world claims, the reasoning is implicit. "Aristotle couldn't have used a laptop"

```
answer_1 = Question("When did Aristotle live?");
answer_2 = Question("When was the laptop invented?");
fact_1 = Verify("answer_1 is before answer_2.");
label = Predict(fact_1)
```

• V_i is the variable that stores the returned result from the function call $f_i(A_i)$

In-context Learning

- We base our program generator on Codex and GPT-3.5.
- We utilize their few-shot generalization ability to learn our grammar from a small number of in-context examples.
- Aggregating Reasoning Programs: We generate a diverse set of *N* candidate reasoning programs, since there might be multiple reasoning paths that can reach the final veracity label.

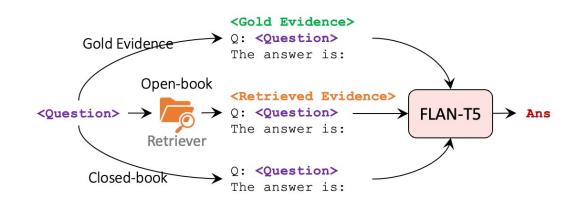
Program Execution

- During execution, we sequentially parses the reasoning steps in *P* with a program interpreter.
- For each step $S_i = (f_i, A_i, V_i)$, the interpreter calls the corresponding off-the-shelf sub-task function f_i .
- We base the sub-functions on the FLAN-T5 model.

Verify Question Predict

- Generate a python-like program that describes the reasoning steps required to verify the claim step-by-step. You can call three functions in the program: 1. Question() to answer a question; 2. Verify() to verify a simple claim; 3. Predict() to predict the veracity label.'''
- # The claim is that Both James Cameron and the director of the film Interstellar were born in Canada. def program()
 - fact_1 = Verify("James Cameron was born in Canada.") Answer_1 = Question("Who is the director of the film Interstellar?") fact_2 = Verify("{Answer_1} was born in Canada.") label = Predict(fact_1 and fact_2)

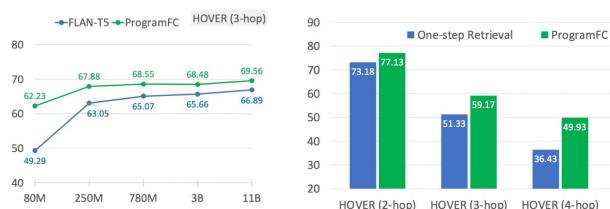
The claim is that <input_claim> def program()



Experimental Results

Main Results		Few-shot learning models		HOVER (2-hop)		HOVER (3-hop)		HOVER (4-hop)		FEVEROUS-S	
				Open	Gold	Open	Gold	Open	Gold	Open	
Q ProgramFC achieves the best	Ι	BERT-FC (Soleimani et al., 2020)	53.40	50.68	50.90	49.86	50.86	48.57	74.71	51.67	
performance on 7 out of 8		LisT5 (Jiang et al., 2021)	56.15	52.56	53.76	51.89	51.67	50.46	77.88	54.15	
evaluations.	Π	RoBERTa-NLI (Nie et al., 2020)	74.62	63.62	62.23	53.99	57.98	52.40	88.28	57.80	
Q ProgramFC is more effective		DeBERTaV3-NLI (He et al., 2021)	<u>77.22</u>	68.72	65.98	60.76	60.49	56.00	91.98	58.81	
on deeper claims.		MULTIVERS (Wadden et al., 2022b)	68.86	60.17	59.87	52.55	55.67	51.86	86.03	56.61	
Q Aggregating reasoning	III	GPT3-Codex (Chen et al., 2021)	70.63	65.07	66.46	56.63	63.49	57.27	89.77	62.58	
programs is helpful.		FLAN-T5 (Chung et al., 2022)	73.69	69.02	65.66	60.23	58.08	55.42	90.81	63.73	
	117	ProgramFC (N=1)	74.10	69.36	66.13	60.63	65.69	59.16	91.77	67.80	
	IV	ProgramFC (N=5)	75.65	<u>70.30</u>	<u>68.48</u>	<u>63.43</u>	<u>66.75</u>	57.74	<u>92.69</u>	<u>68.06</u>	

How Reasoning Program Helps?



- Q The performance decrease is less obvious for ProgramFC with decreasing model size. The high-level planning offered by reasoning programs alleviates the demand on strong, large-scale models.
- In the open-book setting, ProgramFC significantly outperforms one-step retrieval. Iteratively retrieving information guided

Out-of-domain generalization

• A fixed set of in-context examples is insufficient to teach model how to decompose every possible claim in real world.

Computation efficiency

• Computational cost of ~4-5x higher than end-to-end FLAN-T5 model.

Error	Analysis
-------	----------

Error Type

Syntax error

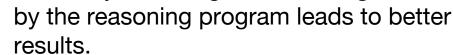
Semantic error

Token

Structure

Incorrect execution

Subtask



Pr	oportion (9	6)	Semantic Error — Subtask: missing / redundant / incorrect sub-task calls
2-hop	3-hop	4-hop	
0% 29%	0% 38%	0% 77%	Example 5: The musician, who founded Morningwood with Max Green, is older than Max Green.
8%	20%	18%	Predicted Program:
19%	13%	57%	answer_1 = Question("Who founded Morningwood with Max Green?")
2%	5%	2%	answer_2 = Question("When was Max Green born?")
71%	62%	23%	<pre>answer_3 = Question("When was the musician born?") fact_1 = Verify("{answer_3} is older than {answer_2}.") → {answer_1} is older than {answer_2}.</pre>
			label = Verify(fact_1)

more in-context examples here